

A Translational Overview of Gene Editing as a Therapeutic Modality

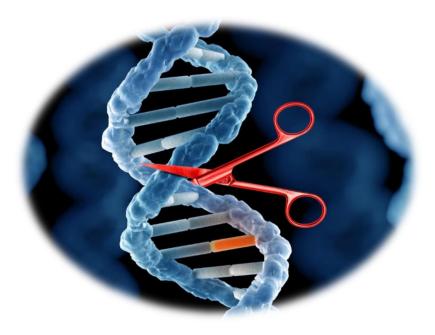
Shravanthi Madhavan

Director, Translational Research Program and Portfolio Management

Nov 13, 2024

smadhavan@ultragenyx.com

Considerations for Gene Editing as a Therapeutic Modality

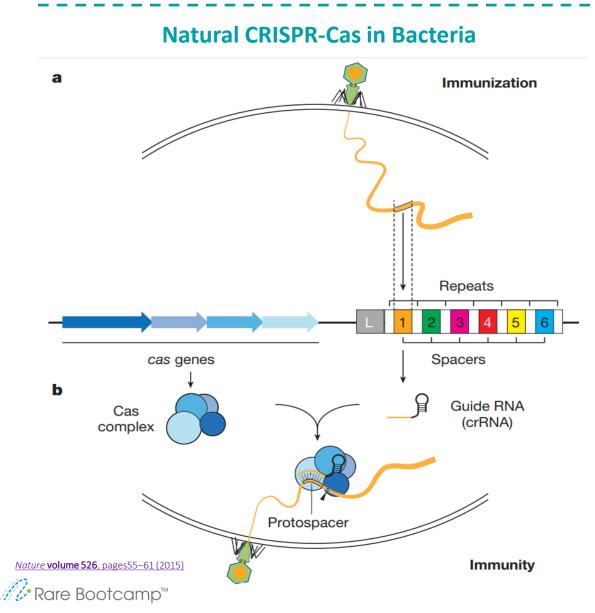

BEFORE

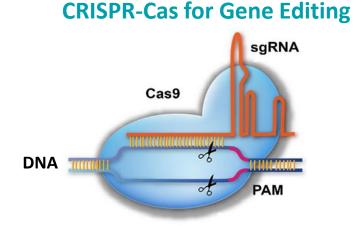
DESIGN of editing complex

- **Type** of mutation/error
- Size of genetic error
- Frequency of error
- Location and distribution of error

DELIVERY into target tissue/cell

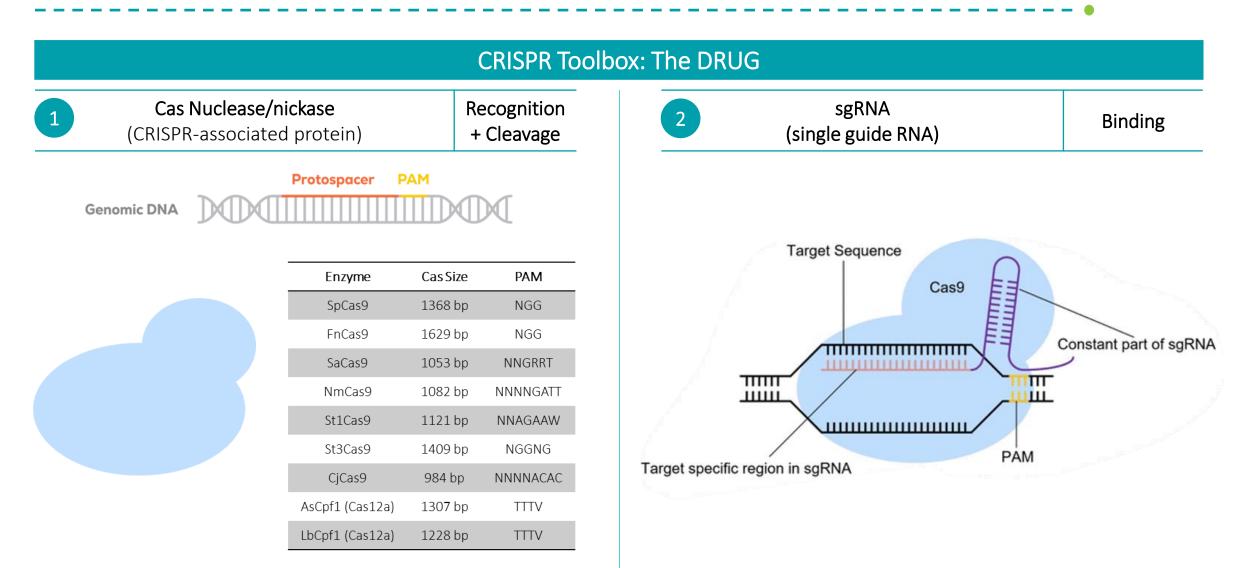
Editing efficiency/% correction


SPECIFICITY/OFF-TARGET effects

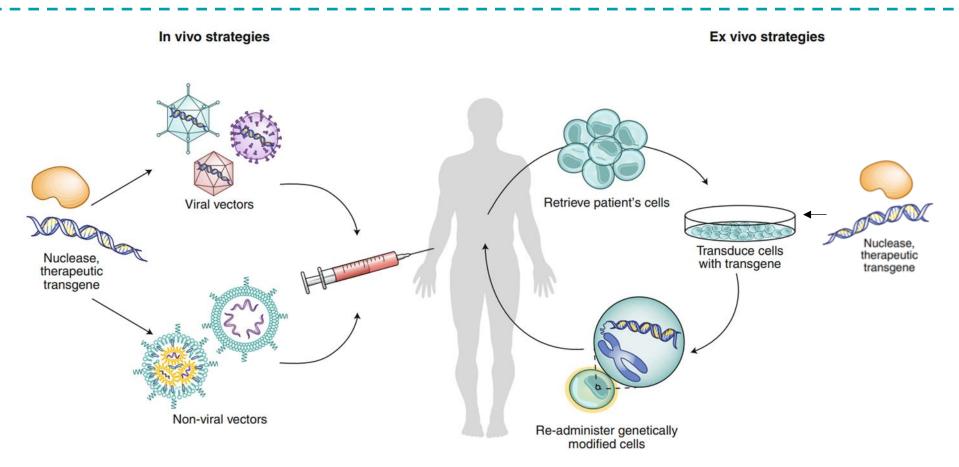

IMMUNE RESPONSE

CRISPR/Cas: Bacterial Immune System to a Gene Editing Toolbox

<u>Clustered Regularly Interspaced Short Palindromic Repeats</u>



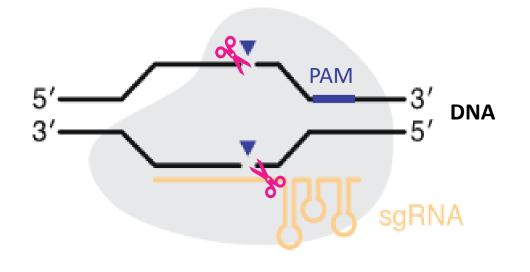
Recognition	PAM (Protospacer Adjacent Motif)							
Binding	sgRNA (single guide RNA)							
Cleavage	Cas Nuclease (CRISPR associated protein)							
Repair	NHEJ (Non-homologous End Joining) HDR (Homology Directed Repair)							
	NHEJ HDR Donor template							


The Basic Gene Editing Toolbox

PAM sequence near target DNA is key for Cas selection and sgRNA design

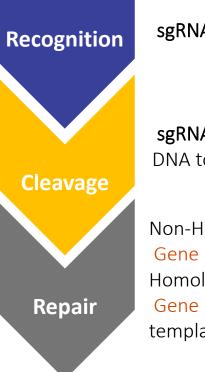
Delivery to target cells is a barrier to broad adaptation

In vivo Gene Editing


- Delivery of editing payload to non-liver tissues can be challenging (e.g. CNS, muscle)
- Cost of manufacturing
- Risk of immune responses to AAV and payload

Ex vivo Gene Editing

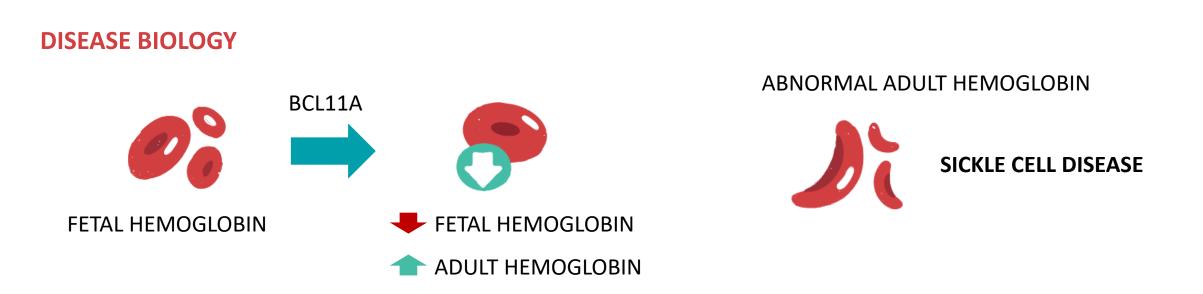
- Limited to certain disorders
- Greater technical control
- Difficult to develop process at scale
- Longer prep and treatment times https://www.nature.com/articles/s41587-020-0565-5


1st Generation CRISPR-Cas Editing

Edit Type: PAM proximal point mutations, small gene deletions and insertions

Cas nuclease

DRUG = sgRNA + Cas enzyme +/- donor template


sgRNA-Cas complex recognizes PAM

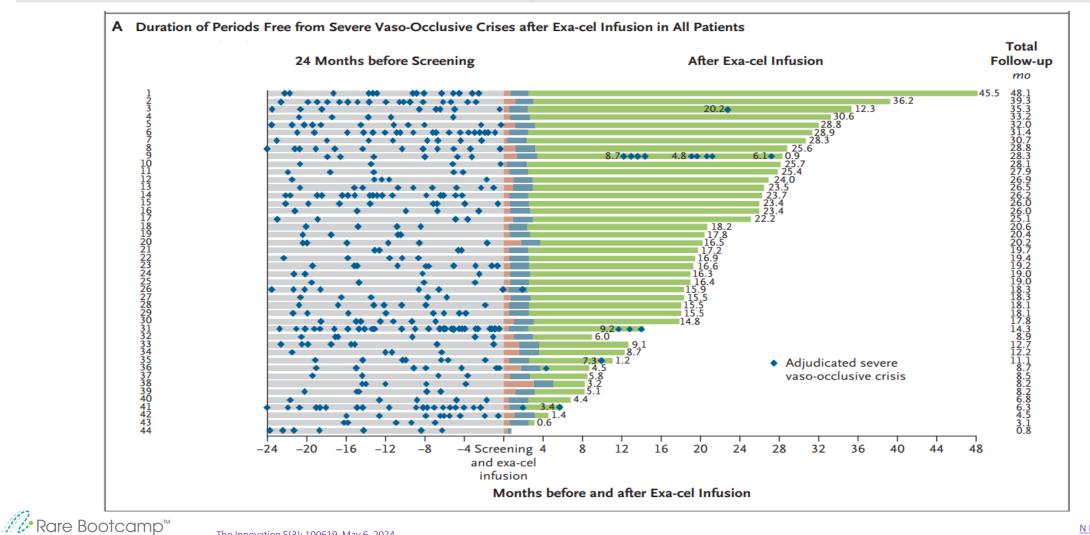
sgRNA guides **Cas** to bind target DNA to generate a double strand cut

Non-Homologous End Joining (NHEJ) Gene knockouts Homology Directed Repair (HDR) Gene insertions with donor DNA template into break site

CASGEVY: Autologous cell therapy for Sickle Cell Disease

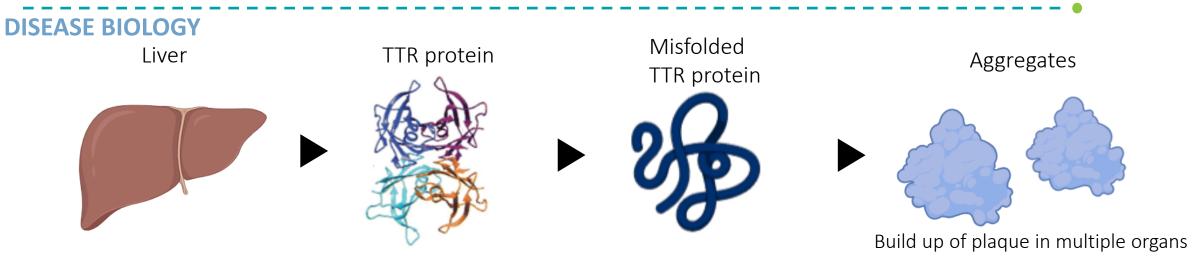
ex vivo CRISPR/Cas9 gene editing of BCL11A in patient's own cells

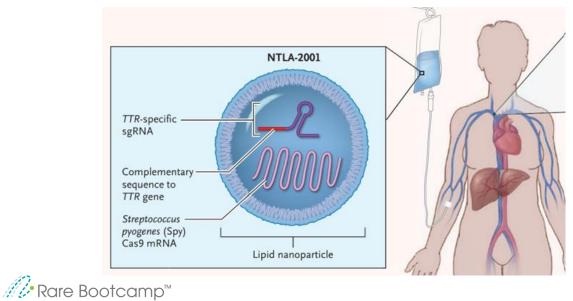
THERAPEUTIC APPROACH


Ex vivo CRISPR-Cas BCL11A knockdown to increase FETAL HEMOGLOBIN production and produce normal blood cells

CASGEVY: Autologous cell therapy for Sickle Cell Disease

ex vivo CRISPR/Cas9 gene editing of BCL11A in patient's own cells

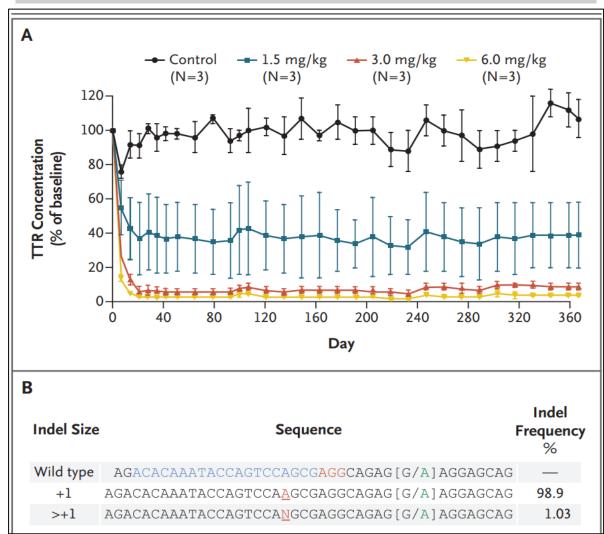

Elevated levels of fetal hemoglobin which eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more


The Innovation 5(3): 100619. May 6, 2024

CRISPR/Cas9 to inactivate the TTR gene in the liver causing ATTR amyloidosis

NTLA-2001 demonstrated proof-of-concept in small group of patients

THERAPEUTIC APPROACH

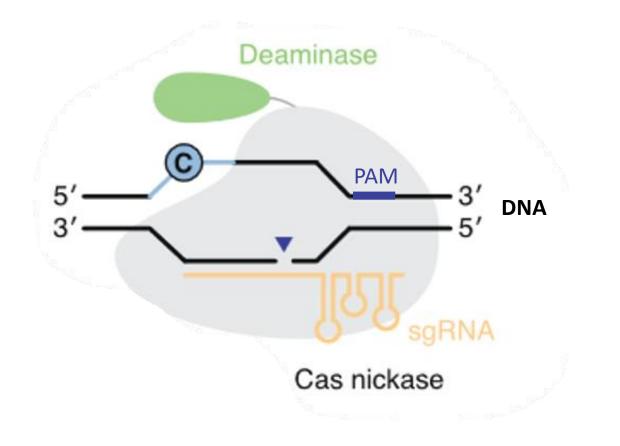

In vivo CRISPR-Cas to inhibit TTR levels

9

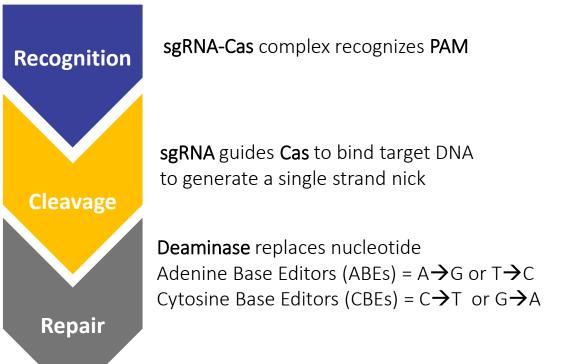
CRISPR/Cas9 to inactivate the TTR gene in the liver causing ATTR amyloidosis

NTLA-2001 demonstrated proof-of-concept in small group of patients

Reduced serum TTR concentrations in non-human primates

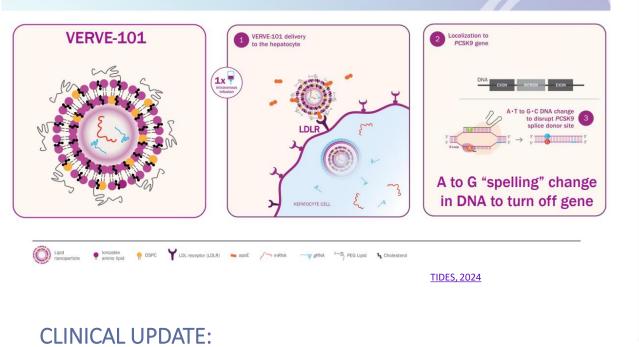

Reduced serum TTR concentrations in patients Mean Reduction in Serum TTR Level at Day 28 -10 -20-Mean Reduction (%) -30--40 -50--60 -70--80 -90 -1000.1 mg/kg 0.3 mg/kg Dose

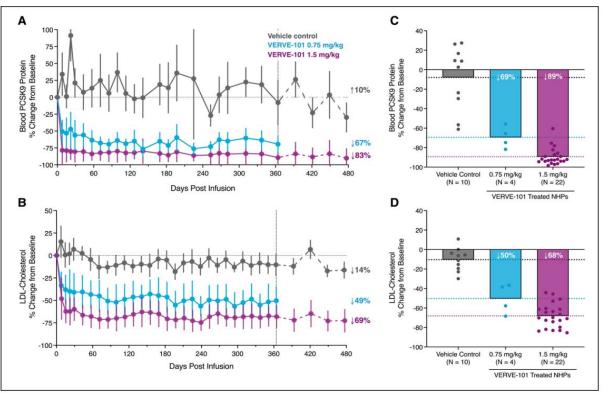
Company/Drug	Disease	Gene	Edit	Tissue	Delivery	
Intellia (NTLA-2001)	ATTR amyloidosis	TTR	Deletion	Liver	IV; LNP	


More Bootcamp™

Base Editing to introduce or correct point mutations

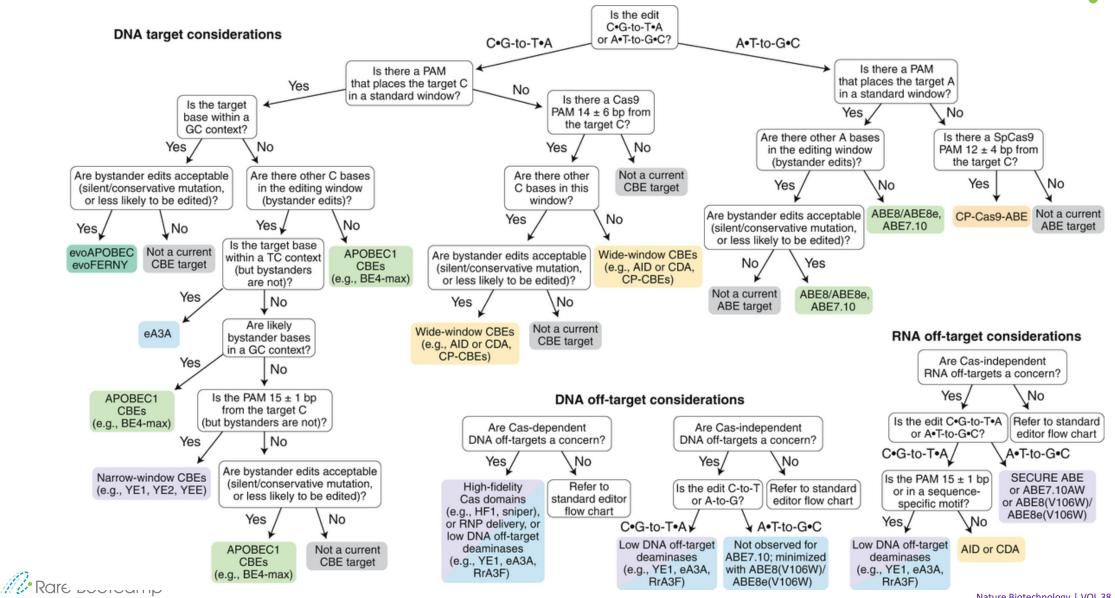
Edit Types: Gene knockouts and single nucleotide modifications (activation, silencing)


DRUG = sgRNA + Cas enzyme + Deaminase

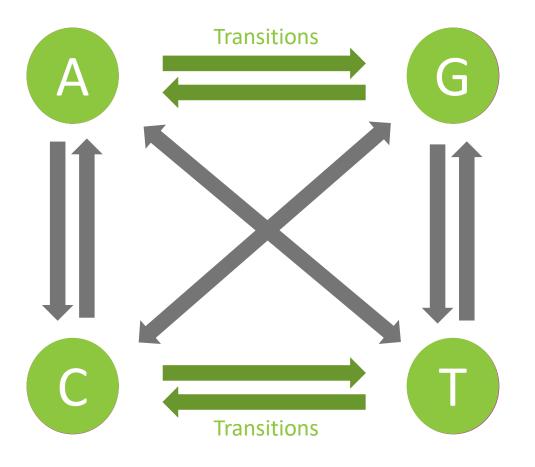

in vivo base editing proof-of-concept in NHP and humans

DISEASE BIOLOGY AND THERAPEUTIC APPROACH

VERVE-101: designed to inactivate liver *PCSK9* and lower LDL-C with a single DNA base pair change


PRECLINICAL DATA: Single IV infusion in NHP -> 83% lower PCSK9 protein and 69% lower LDL-C up to 476 days post-dose

Circulation. 2023;147:242-253


- Clinical trial demonstrated cholesterol reduction of up to 73%.
- Enrollment paused due to adverse effects in 1 patient.

Is base editing the right approach for a given mutation?

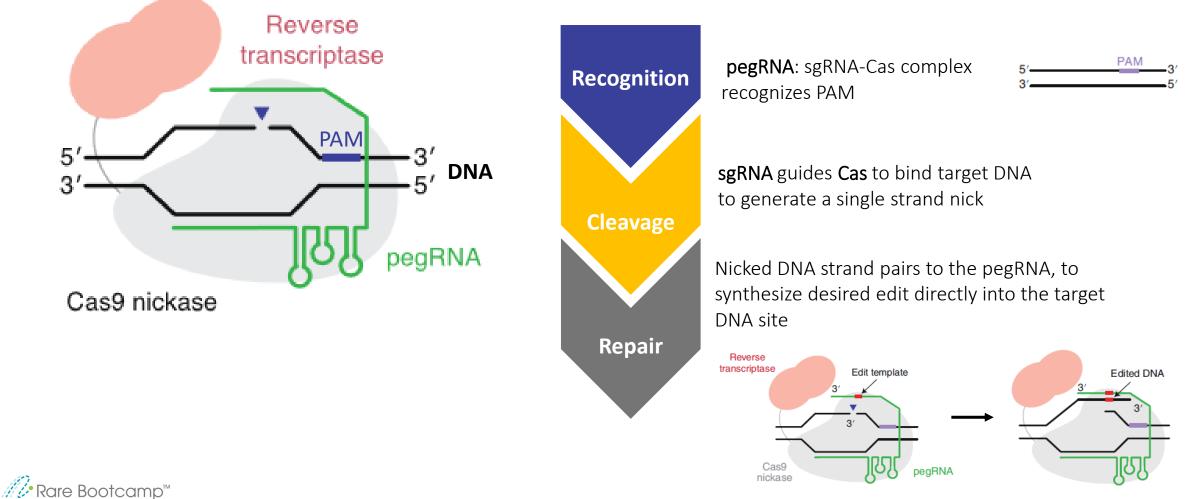
Is base editing the right approach for a given mutation?

1. Base to be edited

2. PAM in target DNA

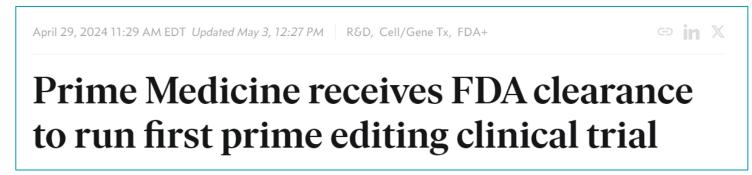
PAM is key

PAM defines the editing window



Prime Editing is the future if we can overcome size and delivery

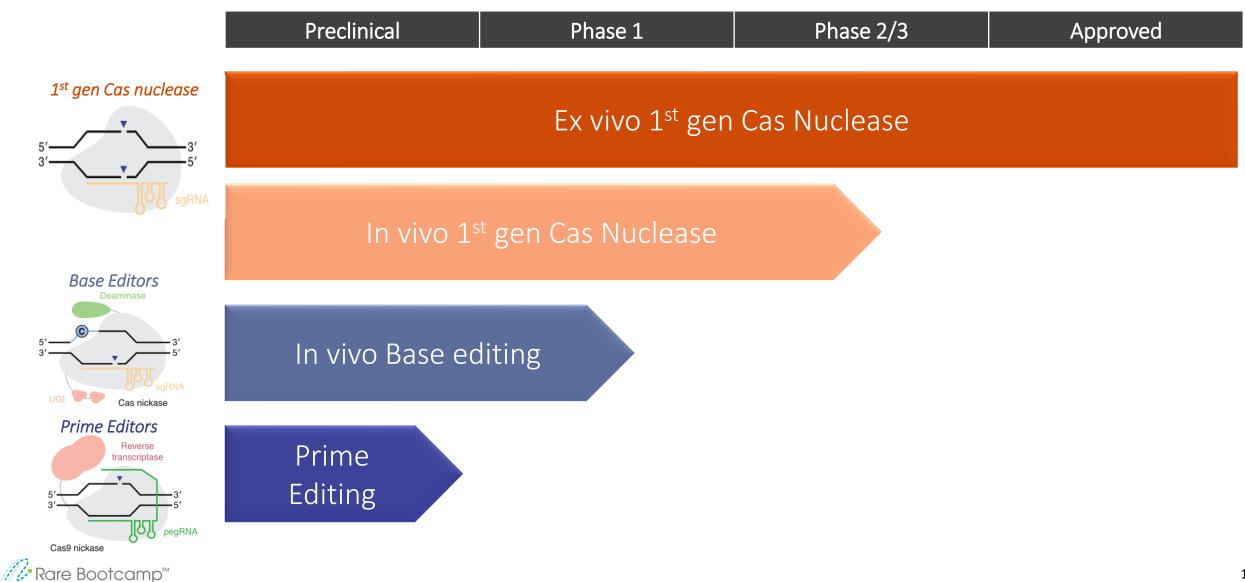
Edit type: Search and replace editing without double strand breaks or donor DNA


DRUG: pegRNA (sgRNA + primer binding site + template) + Cas enzyme + Reverse transcriptase enzyme

15

Prime Editing Today: Promising preclinical data paves path for first ex vivo human trial, **but in vivo delivery still remains a challenge**

- In vivo AAV-mediated prime editing <u>currently</u> requires the use of two or more AAVs.
- Most published preclinical studies use complex delivery platforms and size reduction technologies to deliver the prime editing machinery into the desired cell.
- Prime Editing is still several years of R&D away from being a therapeutic reality.


Company/Drug	Disease	Gene	Edit	Tissue	Delivery
Prime Medicine (PM359)	Chronic granulomatous disease (CGD)	NCF1	Prime edit	Bone marrow	Ex vivo cell therapy

CRISPR-Cas has been evaluated extensively in vitro and in vivo in various disease models

Disordar		Model	American		Diseases Type	Diseases	Gene	Strategy	Animal Model or Cells	Delivery	Outcon	ne	References; Clinical Trials		
Disorder β-Thalassemia	Target (HGVS name) HBB ^{-28 (A-G)}	iPSC	Approach HDR	н			HBB	ABE8e-NRCH-mediated point mutation correction	n HSPCs from patients with SCD	RNP; electroporatio	80% editing effi decrease in the protei	pathogenic	[124]		
	(HBB:c78A>G)	Fibroblasts NR embryos	BE	Bl		-	HBB	IBE-mediated point mutation correction	n CD34 ⁺ HSPCs/erythroid differentiated cells	mRNA; electroporatio	77% editing effi on Makassar		[125] Clinical trials		
	HBB ^{CD 14/15 (+G)} (HBB:c.45_46insG)	HEK293T Hs zygotes	HDR	N H	H N N	SCD/b- thalassemia		ABE8s-mediated point mutation to crea "British mutation" and increase levels o γ-globin		RNP; electroporatio	80% editing effi protein kno efficier	kdown	[129] Clinical trials	Efficiencies; Re	
	HBB ^{CD 17 (AAG>TAG)} (HBB:c.52A>T)	iPSC HEK293T	HDR HDR	N N			HBB (-28)	A3A(N57Q)-BE3-mediated BCL11A enhancer disruption to reproduce γ -glob	PNP-		ation >20% editing efficiency ; 93.3% editing efficiency,		, [130]	rization area;	[120]
	HBB ^{CD 41/42 (-TTCT)}	Hs zygotes HEK293T	HDR	N			BCL11A (+58)	A3A(N57Q)-BE3-mediated BCL11A erythroid-specific enhancer disruption t reproduce γ-globin						choroidal	[120]
	(HBB:c.124_127delTTCT)	Hs zygotes iPSC iPSC	HDR HDR	H H			BCL11A	NHEJ-mediated BCL11A erythroid-speci enhancer disruption	ific CD34 ⁺ HSPCs	RNP; electroporatio	80% editing effi decrease in hemogle	sickle	[131] Clinical trials	(266 injected [121] -free mice carried	
	HBB ^{IVS2-654 (C>T)}	iPSC in NSG mice iPSC	HDR HDR	10			-	HBB	NHEJ-mediated mRNA splicing	CD34 ⁺ HSPCs	Cas12a RNI electroporatio			[132]	eloid cells positive [4 expression (65.5%
Chronic granulomatous	(HBB:c.316-197C>T) CYBB ^{R226*}	Hs CD34 ⁺	HDR	N			BCL11A	NHEJ-mediated BCL11A erythroid-speci enhancer disruption	ific HSPCs	AsCas12a/C _I RNP; electroporatio	~80% editing efficiency		[133]	ue and restoration	
disease, X-linked	(CYBB:c.676C>T) MAPT ^{IVS10+16}	IDEC	DYAL	de co			HBG	NHEJ-mediated HBG disruption	CD34+ cells	AsCas12a/Cp RNP;	>80% editing efficiency		[134] Clinical trials		[59]
Frontotemporal dementia with Parkinsonism linked to Chromosome 17	MAP1	iPSC	RNA knockdown (based on CasRx)	n/			CEP290	HDR-mediated IVS26 mutation deletion		electroporatio	7.5-26.4% editing efficiency		[135]	ival	
Fanconi anemia	FANCC ^{IDS4+4A>T} (FANCC: c.456+4A>T)	Fibroblasts	HDR (based on Cas9 and Cas9 ^{D184} nickase)	H H	Eye diseases	LCA10	CEP290 Cep290	NHEJ-mediated IVS26 mutation deletion HDR-mediated IVS26 mutation deletion inversion		AAV5 AAV5	>50% editing ~30% editing		[136] [137] Clinical trials	-positive loubling of tail-	[123]
	FANCC ^{Q306*} (FANCC c. 1517G>A) FANCD1 886delGT	HEK293FT expressing FANCC ^{Q506*} cDNA Fibroblast	RNA A>I editing (based on Cas13) HDR		23% (7/30)			F9 nullizygous (-/-) mice	Liver by homing; intraspleni of ex vivo-corrected differen	tiated iPSC-	HDR TI (cDNA knock in)) for 9-12 months, modes			
Hemophilia A	F8 Int1 and Int22 inversions	iPSC	Inversion/Deletion		cted cells sion 6.7% (I			Human F9 ^{R226W} in	derived hepatocyte-like cells		~25% of		g efficiency (from less than 10% of wt activity) old induction of human F9 plasm		[68]
Hemophilia B	F9 ^{R226W}	iPSC	by double NHEJ HDR TI (AAVSI)		6 (6/6) clona egrants			NOD/SCID mice	vivo corrected iPSCs		(AAVSI) levels		evels		
Huntington disease	HTT (CAG) _n	Fibroblast	Inversion/Deletion by double NHEJ		J 97% for fi	Hereditary t type I	tyrosinemia	Fah5981SB mice	injection of plasmid with ssDNA donor		withdray		0 hepatocytes, increased to 33% after drawal of medication		[124]
		Fibroblast	Inversion/Deletion by double NHEJ		eduction of to 1/3 of no				Liver by hemodynamics; tail-vein injection of lipid-nanoparticles with AAV donor				6 in hepatocytes; full rescue of weig d liver damage		s [125]
								Fah ^{,,,} mice	Liver by hemodynamics; tail injection of RNPs		Hpd gene excision by double NHEJ	92% in he	patocytes		[126]
			Huntington disease		Human HTT (CAG) _n - transgenic mice	Brain; injection of AAV		Excision by double NHEJ n/a; reduction of mutant injected hemisphere to hemisphere		emisphere to <40		[55]			
Tables linked to source					onemia/Ornit nylase deficie	hine spf ^{ash} mice ncy	Liver by hemodynamics; int infusion of AAV-encoded R		HDR			dvertent ablation s in neonates; lov	L		

Current state of editing technologies

Utility is highly specific, and not all diseases are treatable with the current technology

Key Takeaways

- THE POTENTIAL: Gene editing offers great therapeutic potential to edit the genome permanently to correct disease-causing mutations.
- THE CHALLENGE: Delivery, specificity, and immunogenicity considerations limit broad utility and adaptation.
- **THE NOVELTY:** The field is in its infancy in terms of therapeutic development.
 - Limited CMC/manufacturing experience
 - Limited regulatory precedence
 - High Cost (e.g. Casgevy \$2.2M)
- THE PROMISE: Several editing programs in preclinical and clinical development will pave the path towards our evolving understanding of the technology, its utility and limitations.

"Healing is a matter of time, but it is sometimes also a matter of opportunity" - Hippocrates

Discovery of CRISPR in E.coli 1987 Function of CRISPR demonstrated in lab 2007 CRISPR engineered as a gene editing tool 2013 First therapeutic application of CRISPR/Cas in clinical setting 2016 Nobel prize 2020 First base editor dosed in clinic 2022 First CRISPR therapy approved (Casgevy for SCD) 2023 First Prime editing IND cleared 2024 Multiple clinical trials ongoing for various disorders TODAY **FUTURE**

Sponsored by Ultragenyx

Thank You

